본문 바로가기
반도체 공부/반도체 8대 공정

[반도체 8대 공정] (3) 집적회로와 포토공정

by zn.__. 2024. 5. 16.
728x90

 

전자산업의 혁명, 집적회로(IC, Integrated Circuit)

 

반도체의 핵심 재료인 웨이퍼에 산화막(SiO₂)을 형성해 표면을 불순물로부터 보호하는 ‘산화공정’을 거친 다음에는 반도체 설계 회로를 그려 넣을 차례입니다. 손톱만큼 작고 얇은 반도체의 회로는 어떻게 구성돼 있을까요?

 

이번 시간에는 집적회로(IC, Integrated Circuit)가 무엇인지 알아보려고 합니다. 

 

 

웨이퍼와 집적회로 다이 / 벨 연구소의 존 바딘, 윌리엄 쇼클리, 윌터 브래튼

 
 
작은 반도체 칩 안에는 수천 개에서 수백만 개 이상의 전자 부품들(다이오드, 트랜지스터, 캐패시터, 저항)이 빼곡하게 채워져 있는데요. 이런 반도체 집적회로는 어떻게 탄생했을까요?
 

진화의 시작을 알린 트랜지스터

1947년, 미국 최대 전화 통신 회사 AT&T(American Telephone & Telegraph)의 중앙연구소인 벨 연구소 연구원들은 반도체 격자구조의 조각에 도체선(전기가 흐르는데 사용되는 선)을 접촉시키면 전기 신호가 증폭한다는 사실을 발견합니다.
당시 이것은 증폭기(Amplifier)라는 이름으로 불리다가 나중에 트랜지스터(Transistor)로 알려지게 됐죠.
 
기술이 발전할수록 전자제품의 기능이 많아지면서 트랜지스터와 저항, 다이오드, 캐패시터 등 연결해 주어야 하는 부분이 기하급수적으로 증가하게 되었습니다. 이런 연결점들이 제품을 고장 내는 주원인이 됐는데요.
 
1958년 美 텍사스 인스트루먼트(TI)의 기술자 잭 킬비(Jack Kilby)에 의해 문제를 해결해주는 방법이 개발됐습니다.
복잡한 전자 부품들을 정밀하게 만들어 작은 평면에 인쇄하듯 찍어내 차곡차곡 쌓는 것입니다. 그렇게 탄생한 것이 집적회로(IC)입니다.
 

전자산업의 혁명, 집적회로(IC, integrated Circuit)

반도체 집적회로(IC)를 가득 채우고 있는 트랜지스터, 저항, 다이오드, 캐패시터 등의 부품들은 서로 연결돼 전기 신호를 연산하고 저장합니다. 트랜지스터는 전원을 켜고 끄는 스위치 역할을, 캐패시터는 전하를 충전해 보관하는 창고 역할을, 저항은 전류의 흐름을 조절하며 다이오드는 신호를 고르게 전하는 역할을 합니다. 반도체 집적회로의 제조 방법은 회로 소자들을 모두 미세하고 복잡한 패턴(Pattern)으로 만들어 여러 층의 재료 속에 그려 넣는 방식입니다. 
 
 
포토공정(Photo Lithography)
 
 
 
이번에는 웨이퍼 위에 반도체 회로를 그려 넣는 포토공정(Photo)에 대해 알아보려 합니다.
  

흔히 포토 리소그래피(Photo Lithography)를 줄여서 포토공정(Photo)이라고 하는데요.

이 공정은 웨이퍼 위에 회로 패턴이 담긴 마스크 상 빛을 이용해 비춰 회로를 그리기 때문에 붙여진 이름입니다. 여기서 패턴을 형성하는 방법은 흑백 사진을 만들 때 필름에 형성된 상을 인화지에 인화하는 것과 유사합니다.

 

반도체는 집적도가 증가할수록 칩을 구성하는 단위 소자 역시 미세 공정을 사용해 작게 만들어야 하는데요. 미세 회로 패턴 구현 역시 전적으로 포토 공정에 의해 결정되기 때문에 집적도가 높아질수록 포토 공정 기술 또한 세심하고 높은 수준의 기술을 요하게 됩니다.

 

웨이퍼에 회로 패턴을 만드는 준비 단계

그럼 본격적으로 포토공정이 어떻게 이루어지는지 알아볼까요? 먼저 컴퓨터 시스템(CAD, computer-aided design)을 이용해 웨이퍼에 그려 넣을 회로를 설계합니다. 전자회로 패턴(Pattern)으로 설계되는 이 도면에 엔지니어들이 설계한 정밀회로를 담으며, 그 정밀도가 반도체의 집적도를 결정합니다.

 

사진 원판의 역할을 하는 포토마스크 만들기

설계된 회로 패턴(Pattern)은 순도가 높은 석영(Quartz)을 가공해서 만든 기판 위에 크롬(Cr)으로 미세 회로를 형상화해 포토마스크(Photo Mask)로 재탄생 하게 됩니다. 마스크(Mask)는 Reticle이라고도 부르는데, 이것은 회로 패턴을 고스란히 담은 필름으로 사진 원판의 기능을 하게 되는데요. 마스크는 보다 세밀한 패터닝(Patterning)을 위해 반도체 회로보다 크게 제작되며, 렌즈를 이용 빛을 축소해 조사하게 됩니다.

포토공정은 1.감광액 도포, 2. 노광, 3. 현상의 세부 공정으로 다시 나뉩니다.

 

포토마스크 / 감광액 도포

이제 웨이퍼에 그림을 그릴 준비가 됐습니다.

 

감광액 도포

다음 단계는 웨이퍼 표면에 빛에 민감한 물질인 감광액(PR, Photo Resist)을 골고루 바르는 작업인데요. 이 작업이 사진을 현상하는 것과 같이 웨이퍼를 인화지로 만들어줍니다.

보다 고품질의 미세한 회로 패턴을 얻기 위해서는 감광액(PR) 막이 얇고 균일해야 하며 빛에 대한 감도가 높아야 하죠.

 

빛을 통해 웨이퍼에 회로를 그려 넣는 노광

감광액(PR) 막을 형성해 웨이퍼를 사진 인화지와 비슷한 상태로 만든 후에는 노광장비(Stepper)를 사용해 회로 패턴이 담긴 마스크에 빛을 통과시켜 웨이퍼에 회로를 찍어냅니다. 이 과정을 노광(Stepper Exposure)이라고 하는데요. 반도체 공정에서의 노광은 빛을 선택적으로 조사하는 과정을 말합니다.

 

회로 패턴을 형성하는 현상 공정

포토공정(Photo)의 마지막 단계는 현상(Develop)으로 일반 사진을 현상하는 과정과 동일합니다. 이 과정에서 패턴의 형상이 결정되기 때문에 매우 중요한데요. 현상(Develop) 공정은 웨이퍼에 현상액을 뿌려 가며 노광된 영역과 노광 되지 않은 영역을 선택적으로 제거해 회로 패턴을 형성하는 공정입니다.

웨이퍼 위에 균일하게 입혀진 감광액(PR)은 빛에 어떻게 반응하는가에 따라 양성(positive) 혹은 음성(negative)로 분류됩니다. 양성 감광액의 경우 노광 되지 않은 영역을 남기고 음성 감광액의 경우 노광된 영역만 남겨 사용하게 되는데요. 현상 공정까지 마치게 되면 모든 포토공정이 끝나는데요. 각종 측정 장비와 광학 현미경 등을 통해 패턴이 잘 그려졌는지 꼼꼼하게 검사한 후, 이를 통과한 웨이퍼만이 다음 공정 단계로 이동합니다.

 

 

지금까지 웨이퍼 표면에 세밀한 회로 패턴을 찍는 포토공정에 대해 알아보았는데요. 다음 시간에는 웨이퍼에 회로 패턴을 만들기 위해 필요한 부분을 남기고, 필요 없는 부분을 선택적으로 깎아내는 식각공정에 대해 소개하겠습니다.

 

 

 

 

출처:

1. https://semiconductor.samsung.com/kr/support/tools-resources/fabrication-process/eight-essential-semiconductor-fabrication-processes-part-3-the-integrated-circuit-a-revolution-in-electronics/

 

[반도체 8대 공정] 3탄, 전자산업의 혁명! 집적회로 | 삼성반도체

삼성반도체 공식 웹사이트 기술 블로그에서 집적회로에 대해 알아보세요.

semiconductor.samsung.com

2. https://semiconductor.samsung.com/kr/support/tools-resources/fabrication-process/eight-essential-semiconductor-fabrication-processes-part-4-photolithography-laying-the-blueprint/

 

[반도체 8대 공정] 4탄, 웨이퍼에 회로를 그려 넣는 포토공정 | 삼성반도체

삼성반도체 공식 웹사이트 기술 블로그에서 포토공정에 대해 알아보세요.

semiconductor.samsung.com

 

728x90